新型FoundationModels及應用
訓練和推理加速
可解釋性等理論研究
Virtual Agent
Physical Agent
2050 RESEARCH
為昆侖在通用人工智能(AGI)的中長期發展中提供基礎研究維度上的支持,增強自主創新,加速實現AGI的步伐,同時專注于AGI相關課題的科技創新,提升企業的理論與技術競爭力。
跨越“奇點”、探索未知世界、創造美好未來,成為一家面向未來
世界的卓越科學研究機構!
新加坡工程院院士、AAAI、ACM、IEEE 及 IAPR Fellow
新型FoundationModels及應用
訓練和推理加速
可解釋性等理論研究
Virtual Agent
Physical Agent
Reinforcement Learning from Diverse Human Preferences
Wanqi Xue, Bo An, Shuicheng Yan, Zhongwen Xu
IJCAI 2024 Conference
August 2024
Keywords: Reinforcement Learning, Human Preferences, Human Feedback, Rewards
Exploring Diffusion Time-steps for Unsupervised Representation Learning
Zhongqi Yue, Jiankun Wang, Qianru Sun, Lei Ji, Eric I-Chao Chang, Hanwang Zhang
ICLR 2024 Conference
May 2024
Keywords: unsupervised representation learning, diffusion model, representation disentanglement, counterfactual generation
Synapse: Trajectory-as-Exemplar Prompting with Memory for Computer Control
Longtao Zheng, Rundong Wang, Xinrun Wang, Bo An
ICLR 2024 Conference
May 2024
Keywords: AI Agents, Large Language Models, Prompting
True Knowledge Comes from Practice: Aligning Large Language Models with Embodied Environments via Reinforcement Learning
Weihao Tan, Wentao Zhang, Shanqi Liu, Longtao Zheng, Xinrun Wang, Bo An
ICLR 2024 Conference
May 2024
Keywords: Reinforcement Learning, Large Language Models, Parameter-Efficient Fine-Tuning
Enhancing Video-Language Representations with Structural Spatio-Temporal Alignment
Hao Fei; Shengqiong Wu; Meishan Zhang; Min Zhang; Tat-Seng Chua; Shuicheng Yan
IEEE Transactions on Pattern Analysis and Machine Intelligence
April 2024
Keywords: Videos, Semantics, Transformers
天工
FOR THE BEST AND THE BRIGHTEST